• skylarkcolo

Termination Resistors

Updated: Sep 4

Large 600 to 800 ohm non-inductive resistors are used to terminate the antennas, making them highly directional with FB of more than 30 db on these long antennas. The resistor must be sized to at least 1/3 of the input power (watts) going in to the feed side of the antenna for SSB and 50% on other modes.

This remote antenna direction and termination control box is 1500 feet from the station and uses UHF link radios to switch antenna direction.

The green box has both non-inductive resistors and spark gap lightning protection in it

It is possible to improve the low efficiency and gain of unidirectional rhombics by replacing the termination resistor by a low-loss balanced resonant stub transmission line. The behavior of stubs is due to standing waves along their length. Their reactive properties are determined by their physical length in relation to the wavelength of the radio waves. This reflects the power that would have been wasted in the termination resistor back into the antenna with the correct phase to reinforce the excitation from the transmitter. This circuit can increase the radiation efficiency of transmitting antennas to the 70-80% range, at the cost of increased complexity.

The Rhombic is a very high-gain antenna however it require a lot of Acres and the efficiency when terminated is only about 50%. An alternate impedance-termination system, which was only used for a few large broadcast stations where input powers were above 50 kw, is called the re-entrant line termination. Clyde Haehnlen SK, developed the specifications for the Voice of America antenna system at the Bethany, OH Relay Station. That Rhombic was 90% efficient by re-phasing the power instead of heating up termination resistors, in this system, the Rhombic is terminated in a transmission line, which in turn is coupled back to the input through the proper voltage-matching and phasing networks. Thus, some of the energy in the dissipation line is fed back to the antenna, so that considerably less than 50 percent of the energy is wasted. The old VOA Bethany site in Ohio had efficiency up to over 90%, Clyde provided K0UO with design information for re-phasing a few years ago. The normally displaced terminated power is returned to the input line by properly phasing and adjusted to the voltage magnitude through the use of stub line of proper values and space a long the return line. Impedance of the line is corrected in a like manner in some cases combined with one of the re-entrant stub lines, all stubs are shortened and grounded at the midpoint for lightning protection. This feedbacks the wasted RF energy in-Phase, back into the feeder end of the antenna. For any variation from the stubs frequency, the stub must be retuned.

K0UO is now testing equipment which is re-phasing the power instead of heating up termination resistors.

So are there other ways to get higher efficincy from a Rhombic? A parasitic or active reflector could be used or couple an out of phased reflector depending on the situation. Recirculating the power from the termination resistor in these phased coupled antennas could add about 3db power for the antenna to radiate while increasing the efficiency.

Also phasing 2 or more antennas can be done, but it takes a lot of land for all the antennas.

43 views0 comments

Recent Posts

See All